M-degrees of quadrangle-free planar graphs
نویسندگان
چکیده
منابع مشابه
M-degrees of quadrangle-free planar graphs
The M-degree of an edge xy in a graph is the maximum of the degrees of x and y. The M-degree of a graph G is the minimum over M-degrees of its edges. In order to get upper bounds on the game chromatic number, He et al showed that every planar graph G without leaves and 4cycles has M-degree at most 8 and gave an example of such a graph with M-degree 3. This yields upper bounds on the game chroma...
متن کاملDecompositions of quadrangle-free planar graphs
W. He et al. showed that a planar graph not containing 4-cycles can be decomposed into a forest and a graph with maximum degree at most 7. This degree restriction was improved to 6 by Borodin et al. We further lower this bound to 5 and show that it cannot be improved to 3.
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملVertex Degrees in Planar Graphs
For a planar graph on n vertices we determine the maximum values for the following: 1) the sum of the m largest vertex degrees. 2) the number of vertices of degree at least k. 3) the sum of the degrees of vertices with degree at least k.
متن کاملWheel-free planar graphs
A wheel is a graph formed by a chordless cycle C and a vertex u not in C that has at least three neighbors in C. We prove that every 3-connected planar graph that does not contain a wheel as an induced subgraph is either a line graph or has a clique cutset. We prove that every planar graph that does not contain a wheel as an induced subgraph is 3-colorable. AMS classification: 05C75 ∗Partially ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2009
ISSN: 0364-9024,1097-0118
DOI: 10.1002/jgt.20346